Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.343
Filtrar
1.
Sci Rep ; 12(1): 1432, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082322

RESUMO

Faecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples' distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Colo/microbiologia , Neoplasias do Colo/genética , Quinases Semelhantes a Duplacortina/genética , Mucina-2/genética , Fatores Etários , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Colo/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina/metabolismo , Enterococcus/crescimento & desenvolvimento , Enterococcus/isolamento & purificação , Escherichia/crescimento & desenvolvimento , Escherichia/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Regulação da Expressão Gênica , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Masculino , Mucina-2/metabolismo , Análise de Componente Principal , Proteus/crescimento & desenvolvimento , Proteus/isolamento & purificação , Ratos , Ratos Endogâmicos F344 , Shigella/crescimento & desenvolvimento , Shigella/isolamento & purificação , Streptococcus/crescimento & desenvolvimento , Streptococcus/isolamento & purificação
2.
Front Immunol ; 12: 772532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970262

RESUMO

Emerging evidence supports that the efficacy of immune checkpoint blockade (ICB) therapy is associated with the host's gut microbiota, as prior antibiotic intake often leads to poor outcome and low responsiveness toward ICB treatment. Therefore, we hypothesized that the efficacy of ICB therapy like anti-programmed cell death protein-1 (PD-1) treatment required an intact host gut microbiota, and it was established that probiotics could enhance the recovery of gut microbiota disruption by external stimuli. Thus, the present study aimed to evaluate the effect of the probiotics, Lactobacillus rhamnosus Probio-M9, on recovering antibiotic-disrupted gut microbiota and its impact on the outcome of ICB therapy in tumor-bearing mice. We first disrupted the mouse microbiota by antibiotics and then remediated the gut microbiota by probiotics or naturally. Tumor transplantation was then performed, followed by anti-PD-1-based antitumor therapy. Changes in the fecal metagenomes and the tumor suppression effect were monitored during different stages of the experiment. Our results showed that Probio-M9 synergized with ICB therapy, significantly improving tumor inhibition compared with groups not receiving the probiotic treatment (P < 0.05 at most time points). The synergistic effect was accompanied by effective restoration of antibiotic-disrupted fecal microbiome that was characterized by a drastically reduced Shannon diversity value and shifted composition of dominating taxa. Moreover, probiotic administration significantly increased the relative abundance of beneficial bacteria (e.g., Bifidobacterium pseudolongum, Parabacteroides distasonis, and some Bacteroides species; 0.0001 < P < 0.05). The gut microbiome changes were accompanied by mild reshaping of the functional metagenomes characterized by enrichment in sugar degradation and vitamin and amino acid synthesis pathways. Collectively, this study supported that probiotic administration could enhance the efficacy and responsiveness of anti-PD-1-based immunotherapy, and Probio-M9 could be a potential candidate of microbe-based synergistic tumor therapeutics. The preclinical data obtained here would support the design of future human clinical trials for further consolidating the current findings and for safety assessment of probiotic adjunctive treatment in ICB therapy.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/administração & dosagem , Lacticaseibacillus rhamnosus , Neoplasias/terapia , Probióticos/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Bacteroides/efeitos dos fármacos , Bacteroides/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Linhagem Celular Tumoral , Fezes/microbiologia , Camundongos Endogâmicos BALB C , Neoplasias/microbiologia
3.
Microb Cell Fact ; 20(1): 213, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794462

RESUMO

The intestinal microecological environment is critical to an infant's growth. For those infants consuming milk power, it is very important to improve the intestinal microecological environment to promote the healthy growth of infants. In this paper, Milk protein hydrolysate (MPH), consisting of different proportions of proteins and small molecule peptides (5:5, 4:6, 3:7, 2:8, 1:9) were added to infant formula powder (IFP). The effects of MFP-enriched IFP addition on proliferation and metabolism of Bifidobacterium L80 were studied. Compared with MPH-free IFP, MFP-enriched IFP with 1:9 of proteins to small molecule peptides significantly enhanced the proliferation of Bifidobacterium L80, resulting in higher cell density, greater viable counts and higher titratable acidity. MFP-enriched IFP increased the content of seven organic acids and H2O2 in the system, and improved the antibacterial activity to E. coli BL21. This study suggested that MPH could be an effective addition to infant formula powder to promote the growth of Bifidobacterium, so to improve the intestinal health of infants.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Caseínas/metabolismo , Intestinos/microbiologia , Proteínas do Leite/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Caseínas/química , Humanos , Fórmulas Infantis/química , Proteínas do Leite/química , Hidrolisados de Proteína/química , Proteínas do Soro do Leite/química
4.
Gut Microbes ; 13(1): 1986666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705611

RESUMO

Understanding how exogenous microbes stably colonize the animal gut is essential to reveal mechanisms of action and tailor effective probiotic treatments. Bifidobacterium species are naturally enriched in the gastrointestinal tract of breast-fed infants. Human milk oligosaccharides (HMOs) are associated with this enrichment. However, direct mechanistic proof of the importance of HMOs in this colonization is lacking given milk contains additional factors that impact the gut microbiota. This study examined mice supplemented with the HMO 2'fucosyllactose (2'FL) together with a 2'FL-consuming strain, Bifidobacterium pseudocatenulatum MP80. 2'FL supplementation creates a niche for high levels of B.p. MP80 persistence, similar to Bifidobacterium levels seen in breast-fed infants. This synergism impacted gut microbiota composition, activated anti-inflammatory pathways and protected against chemically-induced colitis. These results demonstrate that bacterial-milk glycan interactions alone drive enrichment of beneficial Bifidobacterium and provide a model for tunable colonization thus facilitating insight into mechanisms of health promotion by bifidobacteriain neonates.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Colite/prevenção & controle , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Animais , Aleitamento Materno , Colite/metabolismo , Colite/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Gut Microbes ; 13(1): 1973835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553672

RESUMO

Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of ß-galactosides on intestinal bacteria were analyzed. Galactosyl-ß1,4-l-rhamnose (Gal-ß1,4-Rha) selectively promoted the growth of Bifidobacterium. Bifidobacterium longum subsp. longum 105-A (JCM 31944) has multiple solute-binding proteins belonging to ATP-binding cassette transporters for sugars. Each strain in the library of 11 B. longum subsp. longum mutants, in which each gene of the solute-binding protein was disrupted, was cultured in a medium containing Gal-ß1,4-Rha as the sole carbon source, and only the BL105A_0502 gene-disruption mutant showed delayed and reduced growth compared to the wild-type strain. BL105A_0502 homolog is highly conserved in bifidobacteria. In a Gal-ß1,4-Rha-containing medium, Bifidobacterium longum subsp. infantis JCM 1222T, which possesses BLIJ_2090, a homologous protein to BL105A_0502, suppressed the growth of enteric pathogen Clostridioides difficile, whereas the BLIJ_2090 gene-disrupted mutant did not. In vivo, administration of B. infantis and Gal-ß1,4-Rha alleviated C. difficile infection-related weight loss in mice. We have successfully screened Gal-ß1,4-Rha as a next-generation prebiotic candidate that specifically promotes the growth of beneficial bacteria without promoting the growth of prominent bacteria and pathogens.


Assuntos
Bifidobacterium longum subspecies infantis/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Clostridioides difficile/crescimento & desenvolvimento , Dissacarídeos/farmacologia , Prebióticos/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Int J Biol Macromol ; 189: 151-159, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34400230

RESUMO

Gut microbial fermentation of soluble dietary fibers promotes general and substrate-specific health benefits. In this study, the fermentation characteristics of two soluble branched-dietary fibers, namely, agavin (a type of agave fructans) and digestion-resistant maltodextrin (RD) were investigated against cellulose, using a simulated colonic fermenter apparatus employing a mixed culture of swine fecal bacteria. After 48 h of complete fermentation period, the microbial composition was different among all groups, where Bifidobacterium spp. and Lactobacillus spp. dominated the agavin treatment, while the members of the families Lachnospiraceae and Prevotellaceae dominated the RD treatment. Agavin treatment exhibited a clearly segregated two-phased prolonged fermentation trend compared to RD treatment as manifested by the fermentation rates. Further, the highest short-chain fatty acids production even at the end of the fermentation cycle, acidic pH, and the negligible concentration of ammonia accumulation demonstrated favorable fermentation attributes of agavin compared to RD. Therefore, agavin might be an effective and desirable substrate for the colonic microbiota than RD with reference to the expressed microbial taxa and fermentation attributes. This study revealed a notable significance of the structural differences of fermentable fibers on the subsequent fermentation characteristics.


Assuntos
Técnicas de Cultura Celular por Lotes , Colo/fisiologia , Fermentação , Frutanos/metabolismo , Polissacarídeos/metabolismo , Amônia/análise , Animais , Bifidobacterium/crescimento & desenvolvimento , Biodiversidade , Contagem de Colônia Microbiana , Digestão , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento , Microbiota , Nitrogênio/análise , Filogenia , Suínos , Fatores de Tempo
7.
Nutr Metab Cardiovasc Dis ; 31(8): 2458-2470, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34090773

RESUMO

BACKGROUND AND AIMS: Insufficient dietary fiber (DF) intake is associated with increased blood pressure (BP) and the mode of action is unclear. The intake of DF supplements by participants in previous interventional studies was still far below the amount recommended by the World Health Organization. Therefore, this study aims to explore the effect of supplementing relatively sufficient DF on BP and gut microbiota in patients with essential hypertension (HTN). METHODS AND RESULTS: Fifty participants who met the inclusion criteria were randomly divided into the DF group (n = 25) and control group (n = 25). All the participants received education on regular dietary guidance for HTN. In addition to dietary guidance, one bag of oat bran (30 g/d) supplement (containing DF 8.9 g) was delivered to the DF group. The office BP (oBP), 24 h ambulatory blood pressure, and gut microbiota were measured at baseline and third month. After intervention, the office systolic blood pressure (oSBP; P < 0.001) and office diastolic blood pressure (oDBP; P < 0.028) in the DF group were lower than those in the control group. Similarly, the changes in 24hmaxSBP (P = 0.002), 24hmaxDBP (P = 0.001), 24haveSBP (P < 0.007), and 24haveDBP (P = 0.008) were greater in the DF group than in the control group. The use of antihypertensive drugs in the DF group was significantly reduced (P = 0.021). The ß diversity, including Jaccard (P = 0.008) and Bray-Curtis distance (P = 0.004), showed significant differences (P < 0.05) between two groups by the third month. The changes of Bifidobacterium (P = 0.019) and Spirillum (P = 0.006) in the DF group were significant. CONCLUSIONS: Increased DF (oat bran) supplement improved BP, reduced the amount of antihypertensive drugs, and modulated the gut microbiota. TRIAL REGISTRATION NUMBER: ChiCTR1900024055.


Assuntos
Avena , Bifidobacterium/crescimento & desenvolvimento , Pressão Sanguínea , Fibras na Dieta/administração & dosagem , Grão Comestível , Hipertensão Essencial/dietoterapia , Microbioma Gastrointestinal , Spirillum/crescimento & desenvolvimento , Adulto , Monitorização Ambulatorial da Pressão Arterial , China , Disbiose , Hipertensão Essencial/diagnóstico , Hipertensão Essencial/microbiologia , Hipertensão Essencial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Nutritivo , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
8.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34100697

RESUMO

Although the beneficial effects of probiotics are likely to be associated with their ability to colonize the gut, little is known about the characteristics of good colonizers. In a systematic analysis of the comparative genomics, we tried to elucidate the genomic contents that account for the distinct host adaptability patterns of Lactobacillus and Bifidobacterium species. The Bifidobacterium species, with species-level phylogenetic structures affected by recombination among strains, broad mucin-foraging activity, and dietary-fibre-degrading ability, represented niche conservatism and tended to be host-adapted. The Lactobacillus species stretched across three lifestyles, namely free-living, nomadic and host-adapted, as characterized by the variations of bacterial occurrence time, guanine-cytosine (GC) content and genome size, evolution event frequency, and the presence of human-adapted bacterial genes. The numbers and activity of host-adapted factors, such as bile salt hydrolase and intestinal tissue-anchored elements, were distinctly distributed among the three lifestyles. The strains of the three lifestyles could be separated with such a collection of colonization-related genomic content (genes, genome size and GC content). Thus, our work provided valuable information for rational selection and gut engraftment prediction of probiotics. Here, we have found many interesting predictive results for bacterial gut fitness, which will be validated in vitro and in vivo.


Assuntos
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Genômica , Lactobacillus/genética , Amidoidrolases , Animais , Bifidobacterium/classificação , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Estilo de Vida , Camundongos , Filogenia , Probióticos , RNA Ribossômico 16S/genética
9.
Commun Biol ; 4(1): 541, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972677

RESUMO

This study aims to understand the mechanistic basis underlying the response of Bifidobacterium to lactulose ingestion in guts of healthy Japanese subjects, with specific focus on a lactulose transporter. An in vitro assay using mutant strains of Bifidobacterium longum subsp. longum 105-A shows that a solute-binding protein with locus tag number BL105A_0502 (termed LT-SBP) is primarily involved in lactulose uptake. By quantifying faecal abundance of LT-SBP orthologues, which is defined by phylogenetic analysis, we find that subjects with 107 to 109 copies of the genes per gram of faeces before lactulose ingestion show a marked increase in Bifidobacterium after ingestion, suggesting the presence of thresholds between responders and non-responders to lactulose. These results help predict the prebiotics-responder and non-responder status and provide an insight into clinical interventions that test the efficacy of prebiotics.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Lactulose/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/metabolismo , Estudos Transversais , Feminino , Fármacos Gastrointestinais/administração & dosagem , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Adulto Jovem
10.
BMC Microbiol ; 21(1): 154, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030655

RESUMO

BACKGROUND: Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS: B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS: Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Ácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Genoma Bacteriano , Glucose/metabolismo , Humanos , Simbiose
11.
Food Chem ; 355: 129608, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799260

RESUMO

Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide (MLP) were characterized in this study. The enzymatic hydrolysis of MLP raised the carbonyl, carboxyl, and hydroxyl groups from 7.21 ± 0.86 to 10.08 ± 0.28 CO/100 Glu, 9.40 ± 0.13 to 17.55 ± 0.34 COOH/100 Glu, and 5.71 ± 0.33 to 8.14 ± 0.24 OH/100 Glu, respectively. Meanwhile, an increase in thixotropic performance and structure-recovery capacities were observed in hydrolyzed MLP, while the molecular weight, surface tension, apparent viscosity, and thermal stability were decreased. An improved antioxidant activity of MLP was also achieved after the enzymatic degradation. Moreover, the hydrolyzed MLP showed greater ability to promote the growths of Bifidobacterium bifidum, Bifidobacterium adolescentis, Lactobacillus rhamnosus, and Lactobacillus acidophilus and the production of acetic acid, butyric acid, and lactic acid. The results demonstrate that enzymatic modification is a useful approach for polysaccharide processing.


Assuntos
Glicosídeo Hidrolases/metabolismo , Morus/química , Morus/metabolismo , Polissacarídeos/química , Antioxidantes/química , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Hidrólise , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Prebióticos , Reologia , Viscosidade
12.
Methods Mol Biol ; 2278: 1-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649943

RESUMO

Since their discovery, bifidobacteria have been considered to represent cornerstone commensal microorganisms in the host-microbiome interface at the intestinal level. Bifidobacteria have therefore enjoyed increasing scientific and commercial interest as a source of microorganisms with probiotic potential. However, since functional and probiotic traits are strictly strain-dependent, there is a constant need to isolate, cultivate, and characterize novel strains, activities that require the utilization of appropriate media, as well as robust isolation, cultivation, and preservation techniques. Besides, effective isolation of bifidobacteria from natural environments might require different manipulation and cultivation media and conditions depending on the specific characteristics of the sample material, the presence of competitive microbiota, the metabolic state in which bifidobacteria might be encountered within the sample and the particular metabolic traits of the bifidobacterial species adapted to such inhabitation.A wide array of culture media recipes have been described in the literature to routinely isolate and grow bifidobacteria under laboratory conditions. However, there is not a single and universally applicable medium for effective isolation, recovery, and cultivation of bifidobacteria, as each growth medium has its own particular advantages and limitations. Besides, the vast majority of these media formulations was not specifically formulated for these microorganisms, and thus information on bifidobacterial cultivation options is scarce while being scattered throughout literature. This chapter intends to serve as a resource summarizing the options to cultivate bifidobacteria that have been described to date, highlighting the main advantages and limitations of each of them.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Meios de Cultura/química , Probióticos/isolamento & purificação , Bifidobacterium/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Microbioma Gastrointestinal , Humanos , Probióticos/metabolismo , Simbiose
13.
Methods Mol Biol ; 2278: 61-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649948

RESUMO

Bifidobacteria are commensal microorganisms able to colonize several ecological niches. Since their discovery, culture-dependent methods combined with the most modern next-generation sequencing techniques have contributed to shed light on the ecological, functional and genomic features of bifidobacteria, purporting them as microorganisms with probiotic traits. Thanks to their acclaimed health-promoting effects, several members of the Bifidobacterium genus have been included in a variety of functional foods and drugs. In this context, the functional relevance of bifidobacteria in the gut explains ongoing efforts to isolate novel and potentially beneficial strains. For this purpose, development of effective and selective isolation protocols in concert with knowledge on the physiological characteristics of bifidobacterial are fundamental requirements for their recovery and discovery from their natural environments, in particular from fecal samples.


Assuntos
Bifidobacterium/isolamento & purificação , Microbiologia Ambiental , Fezes/microbiologia , Animais , Bifidobacterium/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Microbioma Gastrointestinal , Humanos
14.
Methods Mol Biol ; 2278: 117-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649952

RESUMO

Bifidobacteria are able to utilize a diverse range of host-derived and dietary carbohydrates, the latter of which include many plant-derived oligo- and polysaccharides. Different bifidobacterial strains may possess different carbohydrate utilization abilities. These metabolic abilities can be studied using classical bacterial growth assessment methods, such as measurement of changes in optical density or acidity of the culture in the presence of the particular carbohydrate to generate growth and acidification curves, respectively. Scientists may also be interested in the growth rate during the exponential growth phase, and the maximum OD that is reached on a particular sugar, or the length of the lag phase. Furthermore, high-performance liquid chromatography (HPLC) and high-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) are extensively used in carbohydrate and metabolic end-product analysis due to their versatility and separation capabilities.


Assuntos
Bifidobacterium/metabolismo , Metabolismo dos Carboidratos , Bifidobacterium/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Contagem de Colônia Microbiana/métodos
15.
Methods Mol Biol ; 2278: 209-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649959

RESUMO

Bifidogenic effect is a main target for the assessment of prebiotic activity. pH-controlled batch processes of bifidobacteria and fecal microbiota are herein presented. Growth of bifidobacteria, carbohydrate breakdown and consumption, organic acid production, and activity of specific glycosyl hydrolases involved in the hydrolysis of di-, oligo-, or polysaccharides are exploited to study and compare substrate preference of bifidobacteria for candidate prebiotics.


Assuntos
Bifidobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Bifidobacterium/química , Bifidobacterium/crescimento & desenvolvimento , Reatores Biológicos , Metabolismo dos Carboidratos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia em Camada Delgada/métodos , Ensaios Enzimáticos/métodos , Fermentação , Microbioma Gastrointestinal , Humanos , Hidrolases/metabolismo , Hidrólise , Polissacarídeos Bacterianos/análise
16.
J Sci Food Agric ; 101(13): 5721-5729, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650140

RESUMO

BACKGROUND: Lactulose was one of the earliest prebiotics to be identified. To assess the potential risk of large intakes of lactulose to the intestinal microbiota, mice were fed a diet containing lactulose (0%, 5% and 15%, w/w) for 2 weeks and the changes in the fecal microbiota were evaluated by 16S rRNA high-throughput sequencing. RESULTS: Lactulose intervention decreased the α-diversity of the fecal microbiota in both low-dose and high-dose groups. The relative abundance of Actinobacteria was significantly increased, while that of Bacteroidetes was significantly decreased after lactulose intervention. At the genus level, the relative abundance of Bifidobacterium belonging to Actinobacteria was significantly increased, and that of Alistipes belonging to Bacteroidetes was decreased in both low-dose and high-dose groups. The relative abundance of Blautia was significantly increased from 0.2% to 7.9% in the high-dose group and one strain of Blautia producta was isolated from the mice feces. However, the strain could not utilize lactulose. CONCLUSION: Overall, the microbial diversity was decreased after lactulose treatment, with significant increases in the relative abundance of Bifidobacterium. We also provide a strategy to increase the relative abundance of Blautia in the intestine by lactulose feeding at high doses, although the mechanism is not revealed. This will help us understand the prebiotic effect of lactulose on the host health. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Bifidobacterium/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Lactulose/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Clostridiales/metabolismo , DNA Bacteriano/genética , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Food Chem ; 353: 129512, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33740512

RESUMO

This paper describes the successful development of new low-immunoreactive buttermilk (BM)-based formulations which were fermented with 31 lactic acid bacteria (LAB) and Bifidobacterium strains. The aim of this study was to create a new formula, which can serve as potential candidates for the immunotherapy of allergy. Preparations were tested for their content of biologically active compounds, such as proteins, peptides, phospholipids, and short-chain fatty acids (SCFA), as well as for the survivability of LAB and sensory quality. The results showed that the BM was a matrix rich in nutritional components and displayed higher than expected susceptibility to the reduction of protein IgE-immunoreactivity (to 98%) and high bacterial-protecting capacity. The overall sensory quality of examined products was influenced by the profile of SCFA and free peptides, but two formulations fermented with Lactobacillus delbrueckii ssp. bulgaricus-151 and Lactobacillus casei-LcY were the most advantageous with desirable sensory, immunoreactive, and biochemical properties.


Assuntos
Leitelho/análise , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Cromatografia Líquida de Alta Pressão , Digestão , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Imunoglobulina E/imunologia , Lacticaseibacillus casei/crescimento & desenvolvimento , Leite/química , Leite/imunologia , Peptídeos/análise , Peptídeos/metabolismo , Análise de Componente Principal
18.
Sci Rep ; 11(1): 4580, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633259

RESUMO

Daikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis, but not that of Fusobacterium nucleatum or Escherichia coli. Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.


Assuntos
Bifidobacterium/efeitos dos fármacos , Colo/microbiologia , Microbioma Gastrointestinal , Extratos Vegetais/farmacologia , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Panax , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Zanthoxylum , Zingiberaceae
19.
Benef Microbes ; 12(1): 43-53, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33393445

RESUMO

The genus Bifidobacterium comprises various bacterial species, and the complement of species within the human intestinal tract differs from individual to individual. The balance of these bifidobacterial species remains poorly understood, although it is known that the abundance of bifidobacteria increases following the ingestion of prebiotics. We previously conducted a randomised, placebo-controlled, double-blind, crossover study of 2 g/day lactulose ingestion for 2 weeks in 60 Japanese women. To study the effect of lactulose ingestion on each bifidobacterial species, here, we measured the abundance of each of the principal bifidobacterial species. After lactulose ingestion, the log cell counts of the Bifidobacterium adolescentis group (8.97±0.08 vs 9.39±0.08, P=0.0019), Bifidobacterium catenulatum group (9.45±0.10 vs 9.65±0.10, P=0.0032) and Bifidobacterium longum group (9.01±0.07 vs 9.29±0.07, P=0.0012) were significantly higher than in the placebo ingestion control group. However, the log cell counts were similar for Bifidobacterium breve (8.12±0.12 vs 8.33±0.12, P=0.20), Bifidobacterium bifidum (9.08±0.12 vs 9.42±0.14, P=0.095) and Bifidobacterium animalis subspecies lactis (8.65±0.53 vs 8.46±0.46, P=0.77). Cluster analysis of the log cell count data at the bifidobacterial species level revealed three distinct clusters, but the combinations and ratios of the constituent bifidobacteria were not affected by lactulose ingestion. Furthermore, principal coordinate analysis of the intestinal microbiota in the lactulose and placebo ingestion groups using Illumina MiSeq showed no significant differences in the intestinal microbiota as a whole. These results suggest that 2 g/day lactulose ingestion for 2 weeks significantly increases the abundance of intestinal bifidobacteria, but does not affect the intestinal microbiota as a whole.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Microbioma Gastrointestinal , Lactulose/metabolismo , Adulto , Idoso , Bifidobacterium/classificação , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Estudos Cross-Over , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Japão , Pessoa de Meia-Idade , Adulto Jovem
20.
J Dairy Sci ; 104(2): 1433-1444, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246621

RESUMO

Bovine glycomacropeptide (GMP) is a 7,000-Da glycopolypeptide released from κ-casein during cheese making. The O-glycan chains linked to GMP have many biological activities, but their utilization for nutraceutical products is limited due to their low content. To concentrate the functional glycan chains of GMP, we prepared sialylglycopeptide concentrate (SGC) from GMP-containing whey protein concentrate via proteolytic digestion of peptide chains and concentration of sialylglycopeptide by ultrafiltration using membranes with a molecular weight cut-off of 1,000 Da. The abundant saccharides detected in the prepared SGC were N-acetylneuraminic acid (Neu5Ac: 32.3% wt/wt), N-acetylgalactosamine (11.3%), and galactose (10.2%), which constitute O-glycans attached to GMP. The Neu5Ac content in SGC was found concentrated at approximately 4.8-fold of its content in GMP-containing whey protein concentrate (6.8%). Structural analysis of O-glycopeptides by liquid chromatography tandem mass spectrometry identified 88 O-glycopeptides. Moreover, O-acetylated or O-diacetylated Neu5Ac was detected in addition to the previously characterized O-glycans of GMP. Quantitative analysis of O-glycan in SGC by fluorescence labeling of chemically released O-glycan revealed that a disialylated tetrasaccharide was the most abundant glycan (76.6% of the total O-glycan). We further examined bifidogenic properties of SGC in vitro, which revealed that SGC served as a more potent carbon source than GMP and contributes to the growth-promoting effects on certain species of bifidobacteria. Overall, our study findings indicate that SGC contains abundant O-glycans and has a bifidogenic activity. Moreover, the protocol for the preparation of SGC described herein is relatively simple, providing a high yield of glycan, and can be used for large-scale preparation.


Assuntos
Caseínas/química , Glicopeptídeos/química , Leite/química , Fragmentos de Peptídeos/química , Polissacarídeos/química , Acetilgalactosamina/análise , Animais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Bovinos , Galactose/análise , Ácido N-Acetilneuramínico/análise , Oligossacarídeos/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Proteínas do Soro do Leite/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...